ELASTOPLASTIC PROBLEM FOR A THIN PLATE
WEAKENED BY A PERIODIC SYSTEM OF ROUND
APERTURES

V. M. Mirsalimov UDC 539,374

INTRODUCTION

The problem of elasticity theory for a plate weakened by a periodic system of apertures has beentreated
in a series of papers [1, 2]. As stresses increase, plastic zones arise in the plate near the apertures. The
position of the plastic regions has a periodic character. The elastoplastic problem for a thin plate with a
single aperture was solved in [3]. A series of papers has been devoted to periodic elastoplastic problems
for a thin plate {4, 5]. A method of approximating the stress function in the plastic region by a biharmonic
function was used in [4] to solve the problem. By contrast with [4, 5], where the method of perturbations was
used, the present paper applies another method for solving the elastoplastic problem which allows a solution
to be obtained for any relative dimensions of the region.

We shall consider a plate with identical round apertures of radius R(R <1) centered at the points
Py =mo, (m=40, £1, 2 ..), o = 2.

We shall denote the contour of the aperture with center at the point Py, by Ly, the corresponding elastoplastic
boundary by T and the exterior of the contours I'y, by D,. Let a constant normal load o.=p be applied to v
the contour of aperture s and let the tangential component be equal to zero: Tpg =0 (r, § are polar coordi-
nates). Lettheconstant mean stresses exist in the plate, 6x =05, 0y=0§,°, T xy=0 {these are tensions at infinity).

By way of the plasticity condition we adopt the Tresca—S8t, Venant condition and assume that the inequal-
ity og= oy > 0 is satisfied in the plastic region. The characteristics in the plastic zone are radial straight
lines, and the stresses are equal to [6]

0, = 0s + (p — 0,)R/r, 09 = 05, 1,4 = 0. ' 1)
Here oy is the yield stress of the material for simple stress. For the inequality cg= oy >0 to be satisfied the
load should clearly satisfy the condition p=gy.

In the elastic region the stresses are determined from the Kolosov—Muskhelishvili formulas {7}

0, + 0 = 4 Re (D(Z),

= (2)
oy — 0, + 2it,p = 2[20'(z) + ¥(z)] 6,

All the stresses are continuous on the unknown contour I'y, dividing the elastic and plastic regions. Using Egs.
(1), (2) we obtain the following conditions on the contour I'y,:

4 Re ®(z) = 20, -+ R(p — 03)/r;
2®'(z) + ¥(z) = R(6; — p)/2rle=28,

We now pass to the parametric £ plane with the help of the transformation z=w({). The analytic function z =
w(¢) performs the conformal mapping of the region D, onto the region D¢ in the { plane, which is the exterior
of the circles I, of radius A and centers at the points Py,.

We obtain the following boundary-value problem on I, for determining the three analytic functions

®2) = Pla(D)], w(I) = ¥lo(l)], and w(g):

Lipetsk., Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 174-179,
September-October, 1976, Original article submitted November 20, 1975,

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

741



4 Re (P(g) = 263 + R(P - Gs)/V(ﬂ( C)m.(g—)i (3)
D00 (D@'(D) + WD) = R(o, — p)a(D26(0V o(Dyald)- @

We shall look for the required functions in the form of the series

oy +oy had AZRH250) (1) . . )
p(8) = i T %+ go %nte BRI (5)
. oy — 0;" AZR+2(28) (1 o 2222 1) (1)
P(f) = -+ 2 Borio DT gﬂ S e Py 1 A 6)
4 AZR 22— (¢
o(f) = C‘i‘h}:OAZHZW, (7

where

() = ?[(c Fm —2—§—L](m=0,i1, +2,..).

The prime on the sum denotes that the index m=0 is excluded from the summation, We now give the
relations which the coefficients of Egs. (5)-(7) must satisfy. From the conditions for symmetry relative to
the coordinate axes we find that

Im Qapta = Im 62k+2 = Im A2h+2 = 0, k= 0, '1, 2, e s
It follows that
— (n/24)p,A2

from the condition that the principalvector ofthe forces actingonanare joining two congruent points in D¢
should be zero. Since the periodicity conditions are satisfied, the system of boundary conditions (3), (4) on
I (m=0, £1, £2, ...) is replaced by two functional equations, for example, on the contour 7.

In order to construct the equations for the remaining coefficients of the functions ¢ (¢ ), ¥(¢), and w(¢),
we expand these functions in Laurent series in the neighborhood of the point £ =0:
AZk—l—Z ad

(%) = (Ox +0y) + @y + z Rkt TTT kgé Ay b jgo rinl®; (8)

PEAE I = )
Y(E) = ; (67 —03) + 2 Perte i o T k§0 Baryoh j;b ril —

— hi (2 + 2) o d* T i (2f + 2k + 2) 70t 9)

x2k+2 1

()= C—E Agpro o3 (2k+1)§2k+1 +

7; 271
+ 2 Agyp A2 2 e

(10)

(27 + 284+ 1! g5 44 '
Tin = j . _9 1
sk (27)! (2k - 1)1 229 +2RF2 8itne1 m§1 T

Expanding the right-hand sides of Egs. (3), (4) in Laurent series, substituting the expansions Egs, (8)-
(10) into the boundary conditions (3), (4) on the contour I ,(¢ =Aeif) in place of ¢(¢), ¥(¢), and w(¢), and com-
paring the coefficients of e?ik6 (k=0, £1, 2, ,..), we obtain an infinite system of nonlinear algebraic equa-
tions in oy, Bk, Asi. The equations for the first approximation are given below:

aX —aY —AZ =B [kb 3 (et k) bl],
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oY —AX =B (—;- b + klb),

aZ+a,X =B (kzb ++ ch), 2at, (1 + Mry 0) = — Bb,,

——;—— (6% 4 067) — 04 + 2(ag -+ a\?rg0) = — Bb,

A2 [d(bz +5 b%) + Zdlbbl] =1, dbb, - dl(bz + b%) =0,
X = 20,4, -+ 5 0, A0 0+ 0B, + ABahreo + Ayp,s
Y = — 20,0 4-af, + 4,3, a=1-+ A rg4,
Z = 2a0,M'ry 0 4 ay, + A1+ AfoAr o,
a, = % AMry g, B= —;— R, —p).
k=at— 4 L ahd, k= ady (14 Eair o),
ky = ady(Mrio—1), d=a® - Aé(i T %r%w),

4, =— aA2(1 — -%—-}»41'1,0 ),

1 oo o
Yo = 5 (05 —ox ) - Behro,o -+ Behtro,1 — 4otahro 0,
V1 = PoAtrao -+ Buhfre, 1 — Sahiry .

Results of the calculations in the first two approximations are given in Table 1 for cr,°(°= 02=q, where
ax =2B. The parameter A is given in Fig. 1 as a function of the magnitude of the applied load q/o'S for p=0
and for some values of the aperture radius_ R=0,5; 0.4; 0.3; 0.2; 0,1 (curves 1-5).

Setting ¢ =\elf | in Eq. (10), we obtain the equation for the elastoplastic boundary:
1= |a(A e®)] = £(0).

In the first approximation
r® = A2(d -+ 2d, cos 20).

In this case

j=0
rmin=7»|:’l—l—A( +A22( : ’H%)].,

The elastoplastic boundary is represented in Fig. 2 for the case R=0.3, p=0, q/04=0.627 A =0.7,
Trax =0.85, Tyijn =0.419),

(11)

The condition Thin =R determines the least load for which the contour of the aperture is completely
surrounded by the plastic zone. For rp,., =<1, Eq. (11) allows us to find the largest load for which the plastic
zones touch each other. Until now it has been assumed that the load p satisfies the inequality 0 =p=0g.
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Fig, 2

Now let the load p vary within the limits 0 zp=—~0ag. In this case, provided that the Tresca—=St. Venant flow
condition is satisfied, the stresses in the plastic zone are determined by the following formulas [6] for R=

r=R eXp(_p/Us),

0, = p +0, In(r/R). 1.9 =0,
0y = p -+ 0, ot In(r:R). 0y —0,~0,;

for r = R exp(— pioy),

G, = Us _(os'ir)H exp( - p!Us),
Og = O;, Trg — 0.

We note that in this case all the solutions of the elastoplastic problem obtained previously will be valid

only on condition that the elastoplastic boundary completely surrounds the circle of radius R exp(~p/ og). 1t
then suffices to make the following formal substitutions everywhere in the solutions: p is replaced by zero
and R, by R exp(—~p/0g).

The author is grateful to L. A. Galin and G. P. Cherepanov for the interest in the paper.
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